
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr

(C. Pommer).
Journal of Sound and Vibration 298 (2006) 471–474

www.elsevier.com/locate/jsvi
Short Communication

Conditions revisited for asymptotic stability of pervasive
damped linear systems

Wolfhard Kliema, Alexei A. Mailybaevb,�, Christian Pommera

aDepartment of Mathematics, Matematiktorvet, Building 303, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
bInstitute of Mechanics, Moscow State Lomonosov University, Michurinsky pr. 1, 119192 Moscow, Russian Federation

Received 25 January 2006; received in revised form 24 April 2006; accepted 14 June 2006

Available online 1 August 2006
Abstract

A linear oscillatory system with a positive definite mass matrix M, a positive definite stiffness matrix K and a positive

semi-definite damping matrix D can be asymptotically stable. In this case the damping D of the system is called pervasive.

The condition for the damping to be pervasive was given in a paper by Moran in 1970. Moran’s result has been reinvented

in a recent paper from 2004 motivated by a long discussion on ‘‘intuitive’’ examples of marginal and asymptotic stability of

systems with incomplete damping. The aim of the present note is to draw attention of the readers to Moran’s result. We

reveal the importance of Moran’s criterion for suppression of oscillations by incomplete damping in systems with multiple

eigenfrequencies. Finally, we provide extensions to the case of indefinite damping.

r 2006 Elsevier Ltd. All rights reserved.
In 1970 Moran [1] published a paper investigating whether a system

M €xþD _xþ Kx ¼ 0; x 2 Rn (1)

with positive definite matrices M and K ðM40;K40Þ and a positive semi-definite damping matrix D (D � 0)
is asymptotically stable (then the damping is often called pervasive) or has at least one harmonic solution (this
case is often called marginally stable or having a residual motion). The system is asymptotically stable if all the
eigenvalues l of the problem ðl2Mþ lDþ KÞu ¼ 0 have negative real parts. Marginal stability corresponds to
the existence of purely imaginary eigenvalues l.

Moran proved the following: A necessary and sufficient condition for system (1) to be asymptotically stable
is that none of the eigenvectors (eigenmodes) v of the conservative system ðl2Mþ KÞv ¼ 0 lies in the null space
of D, that is Dva0 for all eigenvectors v. The Moran criterion provides a clear physical explanation: the
system is asymptotically stable if and only if damping terms couple all the eigenmodes of the conservative
system. Pervasive damping was also recognized by Müller [2] as essential for an extension of the
Thomson–Tait–Chetayev stability criterion. Of course, other criteria for asymptotic stability of (1) exist. For
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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example, control theory provides the rank condition [2]

rank½M�1D; ðM�1KÞðM�1DÞ; . . . ; ðM�1KÞn�1ðM�1DÞ� ¼ n. (2)

Recently Shahruz and Kessler [3] published a paper whose central result is the above Moran criterion,
except for two superfluous assumptions the authors introduced. They were not aware of the original work and
used a perturbation technique instead of the linear algebra approach of Moran. The paper of Shahruz and
Kessler [3] was motivated by a long discussion of several ‘‘intuitive’’ examples of marginal and asymptotic
stability in systems with incomplete damping [4–6], together with the answers [7–9] based on the rank criterion
(2). Moran’s result was not mentioned is those papers as well.

The aim of our letter is to draw attention of the readers to Moran’s result, which seems to be forgotten (even
though it was mentioned in classical textbooks [2,10]). We argue that the ‘‘intuition’’ in the examples discussed
in Refs. [4–6] gets an immediate rigorous explanation by applying Moran’s criterion: in each case, one can
easily see the eigenmode which is not damped (in marginally stable systems) or all the eigenmodes are coupled
by damping (in asymptotically stable systems). Below we reveal the importance of Moran’s result for
describing stabilization by incomplete damping in systems with multiple eigenfrequencies. Then we provide
extensions to the case of indefinite damping.

The problem of asymptotic stability in systems with incomplete damping is important in many practical
problems. This corresponds to systems with negligibly small natural damping forces, whose oscillations must
be actively damped, e.g., with dashpots. Clearly, one dashpot provides dissipative forces in one dimension
(one degree of freedom). Therefore, one is naturally interested in effective damping with smaller rank damping
matrix D (fewer dashpots). The following statement provides the lower limit for the rank.

Theorem 1. Let m be the maximal multiplicity of eigenfrequencies of the conservative system (with D ¼ 0). Then,
(a)
 the system with incomplete damping is marginally stable (not asymptotically stable) if rankDom;

(b)
 the system with incomplete damping is asymptotically stable for almost all damping matrices such that

rankD � m (i.e., within a set of matrices D satisfying the condition rankD ¼ m0 for any fixed m0 � m, the

damping matrices corresponding to marginally stable systems form a zero-measure subset).
The theorem follows directly from the Moran criterion.

Multiple eigenfrequencies are typical in oscillatory systems with symmetry or as a result of optimization.
This makes multiple eigenfrequencies important in the analysis of oscillations as well as wave dynamics. The
maximal multiplicity of eigenfrequencies m gives the number of active dampers necessary for suppression of
oscillations. Notice that the maximal multiplicity of eigenvalues in a symmetric system may be unbounded: for
example, the eigenfrequencies of an elastic sphere with fixed boundary have multiplicities 2nþ 1 for any
integer n, see e.g. Ref. [11].

In the following we will contribute with an extension. Consider system (1), but this time with an indefinite

damping matrix D. Indefinite damping matrices can appear in modelling sliding bearings, in investigating
cutting of metals where self-excited vibrations are the result of dry friction, and in modelling squealing of car
brakes, see e.g. Refs. [12–14]. In the case of an indefinite damping matrix, system (1) may be stable or unstable.
Well-known necessary (but not sufficient) conditions for stability are trðM�1DÞX0 and trðK�1DÞX0, whereas
the signs X have to be sharpened for asymptotic stability. In the case of sufficiently small damping a first-
order perturbation approach shows that a necessary and sufficient condition for asymptotic stability is
v�Dv40 for all the eigenvectors v of the conservative system ðl2Mþ KÞv ¼ 0 [16]. But system (1) with an
indefinite damping matrix D will always become unstable, if D is multiplied by a sufficient large factor,
see Ref. [15].

Consider now a stable system (1) with an indefinite damping matrix. Assume that an eigenvector v of the
problem ðl2Mþ KÞv ¼ 0 satisfies Dv ¼ 0. Then v is also an eigenvector of ðl2Mþ lDþ KÞv ¼ 0 with the same
purely imaginary eigenvalue l, which means the existence of a residual motion. So asymptotic stability implies
Dva0 for all eigenvectors v of the conservative system, i.e., all the eigenmodes must be coupled via damping
terms. Thus, one part of the Moran criterion is extended to the case of indefinite damping. The opposite
direction of the Moran criterion does not work for indefinite damping.
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Example 1. Consider an oscillatory system (1) with

M ¼

1 0 0

0 1 0

0 0 1

2
64

3
75; D ¼ �

�1 0 0

0 2 0

0 0 1

2
64

3
75; K ¼

5 0 2

0 3 2

2 2 4

2
64

3
75, (3)

where the damping matrix is indefinite. The eigenmodes of the conservative system ðl2Mþ KÞv ¼ 0 are

v1 ¼ ½�1;�2; 2�
T; v2 ¼ ½�2; 2; 1�

T; v3 ¼ ½2; 1; 2�
T. (4)

Then v�1Dv1 ¼ 11�40, v�2Dv2 ¼ 5�40 and v�3Dv3 ¼ 2�40, and the system is asymptotically stable for
sufficiently small �. Numerical analysis shows that the system is asymptotically stable for 0o�o0:626, and
unstable for �40:626.

As a second extension, consider a gyroscopic system

M €xþ ðDþGÞ _xþ Kx ¼ 0 (5)

with M40, K40, DX0 and a skew-symmetric matrix of gyroscopic forces G (G ¼ �GT). According to
Moran [1], system (5) is asymptotically stable if and only if none of the eigenvectors v of the conservative
(undamped) system ðl2Mþ lGþ KÞv ¼ 0 lie in the nullspace of D. Again, we can extend this theory to the
case of an indefinite damping matrix D. Let us assume that the system (5) with indefinite matrix is stable (this
system may be stable even if the damped system without gyroscopic forces is unstable, see Refs. [16,17]). Now
we can ask whether this stable system is asymptotically stable. Again only one part of the Moran criterion
holds. If an eigenvector v of the conservative system ðl2Mþ lGþ KÞv ¼ 0 satisfies Dv ¼ 0, then v is also an
eigenvector of ðl2Mþ lðDþGÞ þ KÞv ¼ 0 with the same purely imaginary eigenvalue l. Therefore,
asymptotic stability implies Dva0 for all eigenvectors v of conservative gyroscopic system. The reverse is
not true for indefinite damping.

We can actually say a little more if the indefinite damping is sufficiently small. A perturbation approach
results in the following: The system M €xþ ð�DþGÞ _xþ Kx ¼ 0 is asymptotically stable for sufficiently small
�40 if and only if v�Dv40 for all the eigenvectors v of the conservative system ðl2Mþ lGþ KÞv ¼ 0. This is
demonstrated in the following example.

Example 2. Consider an oscillatory system (5) with the matrices (3) and

G ¼

0 1 �2

�1 0 1

2 �1 0

2
64

3
75. (6)

The eigenmodes of the conservative system ðl2Mþ lGþ KÞv ¼ 0 are

v1 ¼ ½�0:1914i;�0:0256þ 0:0641i; 0:1819� 0:0197i�T,

v2 ¼ ½�0:2687þ 0:2271i;�0:4828� 0:2091i; 0:5443�T,

v3 ¼ ½0:1478� 0:0867i;�0:0000� 0:3322i;�0:0553� 0:1352i�T, ð7Þ

corresponding to the eigenvalues l1 ¼ 3:5152i, l2 ¼ 0:6596i, l3 ¼ 2:2822i (complex conjugate eigenvectors vj

correspond to complex conjugate eigenvalues lj, j ¼ 1; 2; 3). Then v�1Dv1 ¼ 0:0064�40, v�2Dv2 ¼ 0:7262�40
and v�3Dv3 ¼ 0:2127�40, and the system is asymptotically stable for sufficiently small �. Numerical analysis
shows that the system is asymptotically stable for 0o�o0:8910, and unstable for �40:8910.
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